Talabalarda algoritmik kompetentlikni rivojlantirishning sun’iy intellekt va Big Data Analytics asosida o‘quv faoliyatini real vaqt rejimida kuzatuvchi va boshqaruvchi konseptual modelni takomillashtirish

Авторы

  • Nazokat Kayumova Автор

DOI:

https://doi.org/10.5281/zenodo.18503537

Ключевые слова:

sun’iy intellekt, Big Data Analytics, algoritmik kompetentlik, Learning Analytics, real vaqt monitoringi, adaptiv boshqaruv, ta’lim jarayonini tahlil qilish, data-driven ta’lim, raqamli pedagogika, refleksiya

Аннотация

Mazkur maqolada oliy ta’lim muassasalarida talabalar algoritmik kompetentligini rivojlantirish jarayonini
samarali boshqarish maqsadida sun’iy intellekt (AI) va Big Data Analytics texnologiyalariga asoslangan, o‘quv faoliyatini
real vaqt rejimida kuzatuvchi va boshqaruvchi takomillashtirilgan konseptual model ishlab chiqilgan. Tadqiqotda Learning
Analytics, Educational Data Mining hamda Machine Learning yondashuvlari asosida talabalar faoliyatini uzluksiz monitoring
qilish, tahlil etish, bashoratlash va adaptiv pedagogik qarorlar qabul qilish mexanizmlari ilmiy asoslab berilgan.
Model tarkibiga ma’lumotlarni yig‘ish moduli, analitik yadro, qaror qabul qilish tizimi, vizual kuzatuv paneli va refleksiya
komponenti kiritilgan. Tajriba-sinov natijalari ishlab chiqilgan model an’anaviy monitoring tizimlariga nisbatan aniqlik, tezkorlik
va individuallashtirish ko‘rsatkichlari bo‘yicha sezilarli ustunlikka ega ekanini ko‘rsatdi. Tadqiqot natijalari O‘zbekiston
ta’lim tizimida AI va Big Data texnologiyalariga asoslangan data-driven boshqaruv platformalarini joriy etish uchun
muhim ilmiy-metodik asos bo‘lib xizmat qiladi

Биография автора

  • Nazokat Kayumova

    Mirzo Ulug‘bek nomidagi
    Oʻzbekiston Milliy universiteti Jizzax filiali

Библиографические ссылки

1. O‘zbekiston Respublikasi Prezidenti. (2020). “Raqamli O‘zbekiston – 2030” strategiyasi to‘g‘risida PF–6079-son

Farmon. Toshkent.

2. O‘zbekiston Respublikasi Prezidenti. (2024). “Sun’iy intellekt texnologiyalarini rivojlantirish strategiyasi” PQ–392-son

Qarori. Toshkent.

3. Association for Computing Machinery (ACM) & IEEE Computer Society. (2020). Computing Curricula 2020: Paradigms

for Global Computing Education. ACM Press.

4. Gašević, D., Dawson, S., & Siemens, G. (2022). Handbook of Learning Analytics (2nd ed.). Society for Learning Analytics

Research.

5. Baker, R. S. J. D. (2019). Educational Data Mining and Learning Analytics. Cambridge University Press.

6. Romero, C., & Ventura, S. (2020). Educational Data Mining: A Review of the State of the Art. IEEE Transactions on

Learning Technologies, 13(2), 230–245.

7. Woolf, B. P. (2020). AI in Education: Building Intelligent Systems for Learning and Teaching. Springer Nature.

8. Mayer, R. E. (2021). The Cambridge Handbook of Multimedia Learning (2nd ed.). Cambridge University Press.

9. Dillenbourg, P. (2020). Design for Classroom Orchestration. Routledge.

10. Siemens, G. (2020). Data-Driven Assessment and AI in Education. University of Texas Press.

11. OpenLAP Research Group. (2020). Open Learning Analytics Platform: A Framework for Real-Time Educational Data

Analysis. University of Mannheim.

12. SmartDataEdu. (2022). Smart Education with Big Data and IoT Integration. Tokyo: Japan AI Research Center.

13. Claned Group Ltd. (2021). Claned: Personalized Learning Environment with AI and Analytics. Helsinki: Claned White

Paper.

14. Coursera Inc. (2022). Learning Analytics and AI Integration in Higher Education. Coursera Research Division.

15. Edmodo AI Team. (2021). AI-Based Learning Interaction Analysis in Online Education. Edmodo Research Reports.

16. Begimqulov, U. Sh. (2021). Raqamli pedagogika asoslari. Toshkent: Fan va Texnologiya nashriyoti.

17. Fayziyeva, M. R. (2022). Ta’lim jarayonida individual o‘rganish trayektoriyalarini shakllantirish metodikasi. Toshkent:

TDPU nashriyoti.

18. Abduqodirov, A. A. (2020). Innovatsion ta’lim texnologiyalari. Toshkent: Noshir nashriyoti.

19. Kruchinin, S. V. (2021). Intellektualnyye obrazovatelnyye sistemy: teoriya i praktika. Moskva: Nauka.

20. OECD. (2023). Artificial Intelligence in Education: Opportunities and Challenges for Data-Driven Learning. OECD

Publishing.

Опубликован

2026-02-02

Как цитировать

Talabalarda algoritmik kompetentlikni rivojlantirishning sun’iy intellekt va Big Data Analytics asosida o‘quv faoliyatini real vaqt rejimida kuzatuvchi va boshqaruvchi konseptual modelni takomillashtirish. (2026). MAKTABGACHA VA MAKTAB TA’LIMI JURNALI, 4(2). https://doi.org/10.5281/zenodo.18503537