Talabalarda algoritmik kompetentlikni rivojlantirishning sun’iy intellekt va Big Data Analytics asosida o‘quv faoliyatini real vaqt rejimida kuzatuvchi va boshqaruvchi konseptual modelni takomillashtirish
DOI:
https://doi.org/10.5281/zenodo.18058135Ключевые слова:
algoritmik kompetentlik, sun’iy intellekt, Big Data Analytics, real vaqt monitoringi, o‘quv faoliyati, raqamli tahlil, adaptiv ta’lim modeliАннотация
Mazkur maqolada talabalarda algoritmik kompetentlikni rivojlantirishga yo‘naltirilgan, sun’iy intellekt va
Big Data Analytics texnologiyalariga asoslangan hamda o‘quv faoliyatini real vaqt rejimida kuzatish va boshqarishni
ta’minlovchi konseptual modelni takomillashtirish masalalari yoritilgan. Tadqiqot doirasida ta’lim jarayonida raqamli izlar
(learning analytics), adaptiv monitoring, avtomatlashtirilgan tahlil va prognozlash mexanizmlarining didaktik imkoniyatlari
tahlil qilinadi. Taklif etilayotgan model talabalarning algoritmik fikrlashi, muammoli vaziyatlarni tahlil qilish, yechim ishlab
chiqish va reflektiv faoliyatini rivojlantirishga xizmat qiladi. Tadqiqot natijalari sun’iy intellekt va katta hajmdagi ma’lumotlar
tahliliga asoslangan monitoring tizimi o‘quv jarayonining samaradorligini oshirish, individual ta’lim trayektoriyalarini shakllantirish
va ta’lim sifatini boshqarishda muhim pedagogik ahamiyatga ega ekanini tasdiqlaydi
Библиографические ссылки
1. O‘zbekiston Respublikasi Prezidenti. (2020). “Raqamli O‘zbekiston - 2030” strategiyasi to‘g‘risida PF-6079-son
Farmon. Toshkent. https://lex.uz/ru/docs/-5030957
2. Association for Computing Machinery (ACM) & IEEE Computer Society. (2020). Computing Curricula 2020: Paradigms
for Global Computing Education. ACM Press.
3. Gašević, D., Dawson, S., & Siemens, G. (2022). Handbook of Learning Analytics (2nd ed.). Society for Learning Analytics
Research.
4. Baker, R. S. J. D. (2019). Educational Data Mining and Learning Analytics. Cambridge University Press.
5. Romero, C., & Ventura, S. (2020). Educational Data Mining: A Review of the State of the Art. IEEE Transactions on
Learning Technologies, 13(2), 230-245.
6. Woolf, B. P. (2020). AI in Education: Building Intelligent Systems for Learning and Teaching. Springer Nature.
7. Mayer, R. E. (2021). The Cambridge Handbook of Multimedia Learning (2nd ed.). Cambridge University Press.
8. Dillenbourg, P. (2020). Design for Classroom Orchestration. Routledge.
9. Siemens, G. (2020). Data-Driven Assessment and AI in Education. University of Texas Press.
10. OpenLAP Research Group. (2020). Open Learning Analytics Platform: A Framework for Real-Time Educational Data
Analysis. University of Mannheim.
11. SmartDataEdu. (2022). Smart Education with Big Data and IoT Integration. Tokyo: Japan AI Research Center.
12. Claned Group Ltd. (2021). Claned: Personalized Learning Environment with AI and Analytics. Helsinki: Claned White
Paper.
13. Coursera Inc. (2022). Learning Analytics and AI Integration in Higher Education. Coursera Research Division.
14. Edmodo AI Team. (2021). AI-Based Learning Interaction Analysis in Online Education. Edmodo Research Reports.
15. Begimqulov, U. Sh. (2021). Raqamli pedagogika asoslari. Toshkent: Fan va texnologiya nashriyoti.
16. Fayziyeva, M. R. (2022). Ta’lim jarayonida individual o‘rganish trayektoriyalarini shakllantirish metodikasi. Toshkent:
TDPU nashriyoti.
17. Abduqodirov, A. A. (2020). Innovatsion ta’lim texnologiyalari. Toshkent: Noshir nashriyoti.
18. Kruchinin, S. V. (2021). Intellektualnyye obrazovatelnyye sistemy: teoriya i praktika. Moskva: Nauka.
19. OECD. (2023). Artificial Intelligence in Education: Opportunities and Challenges for Data-Driven Learning. OECD
Publishing.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 MAKTABGACHA VA MAKTAB TA’LIMI JURNALI

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.